A. \(f'\left( x \right) = \dfrac{{\left( {{x^{2019}} - 2020x} \right).\ln 10}}{{2019{x^{2018}} - 2020}}\)
B. \(f'\left( x \right) = \dfrac{{{x^{2019}} - 2020x}}{{\left( {2019{x^{2018}} - 2020} \right).\ln 2018}}\)
C. \(f'\left( x \right) = \dfrac{{\left( {2019{x^{2018}} - 2020} \right)\log e}}{{{x^{2019}} - 2020x}}\)
D. \(f'\left( x \right) = \dfrac{{\left( {2019{x^{2018}} - 2020} \right)\ln 10}}{{{x^{2019}} - 2020x}}\)
C
Đạo hàm của hàm số \(f\left( x \right) = \log \left( {{x^{2019}} - 2020x} \right)\) là :
\(f'\left( x \right) = \dfrac{{\left( {{x^{2019}} - 2020x} \right)'}}{{\ln 10.\left( {{x^{2019}} - 2020x} \right)}}\)\( = \dfrac{{2019{x^{2018}} - 2020}}{{\ln 10.\left( {{x^{2019}} - 2020x} \right)}}\) \( = \dfrac{{2019{x^{2018}} - 2020}}{{\dfrac{1}{{{{\log }_{10}}e}}\left( {{x^{2019}} - 2020x} \right)}}\) \( = \dfrac{{\left( {2019{x^{2018}} - 2020} \right)\log e}}{{{x^{2019}} - 2020x}}\)
Chọn C
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247