A. \(m \in \left( {0;8} \right)\)
B. \(m \in \left( {0;2} \right)\)
C. \(m \in \left( { - \infty ;0} \right) \cup \left( {8; + \infty } \right)\)
D. \(m \in \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\)
D
TXĐ : \(D = \mathbb{R}\)
Ta có:
\(\begin{array}{l}y = {x^3} - 3m{x^2} + 6mx + m\\ \Rightarrow y' = 3{x^2} - 6mx + 6m\end{array}\)
Hàm số đã cho có 2 điểm cực trị khi và chỉ khi phương trình \(y' = 0\) có 2 nghiệm phân biệt.
Do đó, \(\Delta ' > 0 \Leftrightarrow {\left( { - 3m} \right)^2} - 3.6m > 0\) \( \Leftrightarrow 9{m^2} - 18m > 0\) \( \Leftrightarrow 9m\left( {m - 2} \right) > 0 \Leftrightarrow \left[ \begin{array}{l}m > 2\\m < 0\end{array} \right.\)
Vậy tập hợp tất cả các giá trị của tham số \(m\) để hàm số đã cho có 2 điểm cực trị là \(m \in \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\)
Chọn D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247