Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y = {x^3} - 3m{x^2} + 6mx + m\) có hai điểm cực trị.

Câu hỏi :

Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y = {x^3} - 3m{x^2} + 6mx + m\) có hai điểm cực trị. 

A. \(m \in \left( {0;8} \right)\) 

B. \(m \in \left( {0;2} \right)\) 

C. \(m \in \left( { - \infty ;0} \right) \cup \left( {8; + \infty } \right)\) 

D. \(m \in \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\)   

* Đáp án

D

* Hướng dẫn giải

TXĐ :   \(D = \mathbb{R}\)

Ta có:

\(\begin{array}{l}y = {x^3} - 3m{x^2} + 6mx + m\\ \Rightarrow y' = 3{x^2} - 6mx + 6m\end{array}\)

Hàm số đã cho có 2 điểm cực trị khi và chỉ khi phương trình \(y' = 0\) có 2 nghiệm phân biệt.

Do đó,   \(\Delta ' > 0 \Leftrightarrow {\left( { - 3m} \right)^2} - 3.6m > 0\) \( \Leftrightarrow 9{m^2} - 18m > 0\) \( \Leftrightarrow 9m\left( {m - 2} \right) > 0 \Leftrightarrow \left[ \begin{array}{l}m > 2\\m < 0\end{array} \right.\)

Vậy tập hợp tất cả các giá trị của tham số \(m\) để hàm số đã cho có 2 điểm cực trị là \(m \in \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\)

Chọn D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK1 môn Toán 12 năm 2021-2022 Trường THPT Mai Thúc Loan

Số câu hỏi: 40

Copyright © 2021 HOCTAP247