Cho hàm số \(y = x\left[ {\cos \left( {\ln x} \right) + \sin \left( {\ln x} \right)} \right]\). Khẳng định nào sau đây đúng?

Câu hỏi :

Cho hàm số \(y = x\left[ {\cos \left( {\ln x} \right) + \sin \left( {\ln x} \right)} \right]\). Khẳng định nào sau đây đúng?

A. \({x^2}y'' + xy' - 2y = 0\)

B. \({x^2}y'' - xy' - 2y = 0\)

C. \({x^2}y'' - xy' + 2y = 0\)

D. \({x^2}y' - xy'' + 2y = 0\)

* Đáp án

C

* Hướng dẫn giải

\(y' = \cos \left( {\ln x} \right) + \sin \left( {\ln x} \right) + x\left[ { - \frac{1}{x}\sin \left( {\ln x} \right) + \frac{1}{x}\cos \left( {\ln x} \right)} \right] = 2\cos \left( {\ln x} \right)\)

\(y'' =  - \frac{2}{x}\sin \left( {\ln x} \right)\)

Vậy \({x^2}y'' - xy' + 2y =  - 2x\sin \left( {\ln x} \right) - 2x\cos \left( {\ln x} \right) + 2x\sin \left( {\ln x} \right) + 2x\cos \left( {\ln x} \right) = 0\)

Copyright © 2021 HOCTAP247