Câu hỏi :

Cho \(a, b, c >1\). Biết rằng biểu thức \(P = lo{g_a}\left( {bc} \right) + lo{g_b}\left( {ac} \right) + 4lo{g_c}\left( {ab} \right)\) đạt giá trị nhất \(m\) khi \(lo{g_b}c = n\). Tính giá trị \(m+n\).

A. \(m+n=12\)

B. \(m + n = \frac{{25}}{2}\)

C. \(m+n=14\)

D. \(m+n=10\)

* Đáp án

A

* Hướng dẫn giải

Ta có \(P = lo{g_a}b + lo{g_a}c + lo{g_b}a + lo{g_b}c + 4lo{g_c}a + 4lo{g_c}b\)

\( \Leftrightarrow P = \left( {lo{g_a}b + \frac{1}{{lo{g_a}b}}} \right) + \left( {lo{g_a}c + \frac{4}{{lo{g_a}c}}} \right) + \left( {lo{g_b}c + \frac{4}{{lo{g_b}c}}} \right) \ge 2 + 4 + 4 = 10 \Rightarrow m = 10\)

Dấu đẳng xảy ra khi \(lo{g_a}b = 1,lo{g_a}c = 2,lo{g_b}c = 2 \Rightarrow n = 2\)

Vậy \(m+n=12\).

Copyright © 2021 HOCTAP247