Tính mô đun của số phức \(z\dfrac{{1 + 2i}}{{1 - i}}\).

Câu hỏi :

Tính mô đun của số phức \(z\dfrac{{1 + 2i}}{{1 - i}}\).

A. \(|z| = \dfrac{{\sqrt 5 }}{2}\).     

B. \(|z| = \sqrt {10} \). 

C. \(|z| = \dfrac{5}{2}\). 

D. \(|z| = \dfrac{{\sqrt {10} }}{2}\).   

* Đáp án

D

* Hướng dẫn giải

\(\begin{array}{l}z = \dfrac{{1 + 2i}}{{1 - i}} = \dfrac{{\left( {1 + 2i} \right).\left( {1 + i} \right)}}{{\left( {1 - i} \right)\left( {1 + i} \right)}}\\\,\,\,\, = \dfrac{{1 + 3i + 2.{i^2}}}{{1 - {i^2}}} = \dfrac{{ - 1 + 3.i}}{2}\\\,\,\,\, = \dfrac{{ - 1}}{2} + \dfrac{3}{2}i\\ \Rightarrow \left| z \right| = \sqrt {{{\left( { - \dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{3}{2}} \right)}^2}}  = \dfrac{{\sqrt {10} }}{2}\end{array}\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Nhân Chính

Số câu hỏi: 50

Copyright © 2021 HOCTAP247