Tìm số giao điểm của đồ thị hàm số sau \(y = {x^4} - 3{x^2} - 5\) và trục hoành.

Câu hỏi :

Tìm số giao điểm của đồ thị hàm số \(y = {x^4} - 3{x^2} - 5\) và trục hoành.

A. 4

B. 3

C. 1

D. 2

* Đáp án

D

* Hướng dẫn giải

Xét \(y = {x^4} - 3{x^2} - 5\)

TXĐ: \(D = \mathbb{R}\)

\(\begin{array}{l}y' = 4{x^3} - 6x\\y' = 0\\ \Rightarrow 4{x^3} - 6x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \dfrac{{\sqrt 6 }}{2}\\x =  - \dfrac{{\sqrt 6 }}{2}\end{array} \right.\end{array}\)

Bảng biến thiên

Từ  bảng biến thiên, số giao điểm của đồ thị \(y = {x^4} - 3{x^2} - 5\) với  trục hoành là 2.

Cách khác:

Đặt \(t = {x^2} \ge 0\) ta được:

\({t^2} - 3t - 5 = 0\) có \(ac < 0\) nên pt có hai nghiệm t trái dấu (nghiệm dương nhận, nghiệm âm loại)

 

Do đó pt đã cho có \(2\) nghiệm phân biệt.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Nhân Chính

Số câu hỏi: 50

Copyright © 2021 HOCTAP247