Cho số phức z thỏa mãn sau \(|z - 2 - 2i| = 1\). Số phức z - i có mô đun nhỏ nhất là:

Câu hỏi :

Cho số phức z thỏa mãn sau \(|z - 2 - 2i| = 1\). Số phức z  - i có mô đun nhỏ nhất là:

A. \(\sqrt 5  - 1\). 

B. \(1 - \sqrt 5 \). 

C. \(\sqrt 5  + 1\).   

D. \(\sqrt 5  + 2\). 

* Đáp án

A

* Hướng dẫn giải

Đặt z = x +yi                   M(x,y)      \(x,y \in \mathbb{Z}\)

\(\begin{array}{l}|z - 2 - 2i| = 1\\ \Leftrightarrow |x + yi - 2 - 2i| = 1\\ \Leftrightarrow \left| {\left( {x - 2} \right) + \left( {y - 2} \right)i} \right| = 1\\ \Leftrightarrow \sqrt {{{\left( {x - 2} \right)}^2} + {{(y - 2)}^2}}  = 1\\ \Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 1\end{array}\)=1

Điểm M biểu diễn cho số phức z nằm trên đường tròn tâm I(2,2), bán kính r = 1

Ta lại có:  \(\left| {z--i} \right| = \left| {x + yi--i} \right| \)\(\,= \left| {x + \left( {y--1} \right)} \right| = \sqrt {{x^2} + {{(y - 1)}^2}} \)

Lấy H(0, 1) suy ra \(HM = \sqrt {{x^2} + {{(y - 1)}^2}} \)

Do M chạy trên đường tròn, H cố định nên MH nhỏ nhất khi M là giao điểm của HI với đường tròn.

Có H(0,1) , I(2,2) nên \(\overrightarrow {HI}  = \left( {2;1} \right)\) = (2,1)

Pt đường thẳng HI: (1) \(\left\{ \begin{array}{l}x = 2t\\y = 1 + t\end{array} \right.\)

Mặt khác, HI giao với đường tròn tại M nên thay (1) vào pt đường tròn ta được :

 

\(\begin{array}{l}{\left( {2t - 2} \right)^2} + {\left( {t - 1} \right)^2} = 1\\ \Leftrightarrow 5{\left( {t - 1} \right)^2} = 1\\ \Leftrightarrow {\left( {t - 1} \right)^2} = \dfrac{1}{5}\\ \Leftrightarrow \left[ \begin{array}{l}t - 1 = \dfrac{1}{{\sqrt 5 }}\\t - 1 =  - \dfrac{1}{{\sqrt 5 }}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}t = 1 + \dfrac{1}{{\sqrt 5 }}\\t = 1 - \dfrac{1}{{\sqrt 5 }}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}{M_1} = \left( {2 + \dfrac{2}{{\sqrt 5 }},2 + \dfrac{1}{{\sqrt 5 }}} \right)\\{M_2} = \left( {2 - \dfrac{2}{{\sqrt 5 }},2 - \dfrac{1}{{\sqrt 5 }}} \right)\end{array} \right.\\\\\end{array}\)

Có \(H{M_1} = \sqrt 5  + 1;\,\,H{M_2} = \sqrt 5  - 1\)

\(|z - i{|_{\min }} \Leftrightarrow |z - i| = H{M_2} = \sqrt 5  - 1\)  với \({M_2} = \left( {2 - \dfrac{2}{{\sqrt 5 }},2 - \dfrac{1}{{\sqrt 5 }}} \right)\)

Copyright © 2021 HOCTAP247