Cho hàm số sau \(y = {x^{{1 \over 4}}}(10 - x)\,,\,\,x > 0\). Khẳng định nào sau đây là đúng ?

Câu hỏi :

Cho hàm số \(y = {x^{{1 \over 4}}}(10 - x)\,,\,\,x > 0\). Khẳng định nào sau đây là đúng ?

A. Hàm số nghịch biến trên (0 ; 2).

B. Hàm số nghịch biến trên khoảng \((5; + \infty )\). 

C. Hàm số đồng biến trên \((2; + \infty )\). 

D. Hàm số không có điểm cực trị. 

* Đáp án

B

* Hướng dẫn giải

Ta có: \(y = {x^{\dfrac{1}{4}}}(10 - x)\,,\,\,x > 0\)

\(\Rightarrow y' = \dfrac{1}{4}{x^{ - \dfrac{3}{4}}}\left( {10 - x} \right) - {x^{\dfrac{1}{4}}}\)\(\, = \dfrac{{10 - x}}{{4\sqrt[4]{{{x^3}}}}} - \dfrac{1}{{\sqrt[4]{x}}} \)\(\,= \dfrac{1}{{\sqrt[4]{x}}}\left( {\dfrac{{10 - x}}{{4\sqrt x }} - 1} \right)\)     

+) \(y' = 0 \Leftrightarrow \dfrac{1}{{\sqrt[4]{x}}}\left( {\dfrac{{10 - x}}{{4\sqrt x }} - 1} \right) = 0 \)

 

\(\Leftrightarrow \dfrac{{10 - x}}{{4\sqrt x }} - 1 = 0 \Leftrightarrow 10 - x = 4\sqrt x \)

\( \Leftrightarrow x + 4\sqrt x  - 10 = 0 \)

\(\Leftrightarrow \left[ \begin{array}{l}\sqrt x =  - 2 + \sqrt {14}(tm) \\\sqrt x =  - 2 - \sqrt {14}(ktm) \end{array} \right.\)

\( \Leftrightarrow x = 18 - 4\sqrt {14} \)

+ Hàm số đồng biến trên \(\left( {0; 18 -4\sqrt {14} } \right)\) và nghịch biến trên \(\left( { 18- 4\sqrt {14} ; + \infty } \right)\)

Chọn đáp án B.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Phùng Hưng

Số câu hỏi: 50

Copyright © 2021 HOCTAP247