Cho biết b > 1, sinx > 0, cosx > 0 và \({\log _b}\sin x = a\) Khi đó \({\log _b}\cos x\) bằng:

Câu hỏi :

Cho b > 1, sinx > 0, cosx > 0 và \({\log _b}\sin x = a\) Khi đó \({\log _b}\cos x\) bằng:

A. \(\sqrt {1 - {a^2}} \).         

B. \({b^{{a^2}}}\). 

C. \(2{\log _b}(1 - {b^{{a \over 2}}})\).     

D. \({1 \over 2}{\log _b}(1 - {b^{2a}})\).  

* Đáp án

D

* Hướng dẫn giải

Ta có   \({\log _b}\sin x = a \Rightarrow \sin x = {b^a} \)

\(\Leftrightarrow {\sin ^2}x = {\left( {{b^a}} \right)^2}\)

\( \Rightarrow {\cos ^2}x = 1 - {\sin ^2}x = 1 - {\left( {{b^a}} \right)^2}\)

\(\Leftrightarrow \cos x = \sqrt {1 - {{\left( {{b^a}} \right)}^2}} \)

Khi đó \({\log _b}\cos x = {\log _b}{\left( {1 - {{\left( {{b^a}} \right)}^2}} \right)^{\dfrac{1}{2}}}\)\(\, = \dfrac{1}{2}{\log _b}\left( {1 - {{\left( {{b^a}} \right)}^2}} \right)\)

Chọn đáp án D.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Phùng Hưng

Số câu hỏi: 50

Copyright © 2021 HOCTAP247