Cho hàm số \(y = 2{x^3} - 3\left( {3m - 1} \right){x^2} + 6\left( {2{m^2} - m} \right)x + 3\).

Câu hỏi :

Cho hàm số \(y = 2{x^3} - 3\left( {3m - 1} \right){x^2} + 6\left( {2{m^2} - m} \right)x + 3\). Tìm \(m\) để hàm số nghịch biến trên đoạn có độ dài bằng 4.

A. \(m=5\) hoặc \(m=3\)

B. \(m=-5\) hoặc \(m=3\)

C. \(m=5\) hoặc \(m=-3\)

D. \(m=5\) hoặc \(m=3\)

* Đáp án

C

* Hướng dẫn giải

Ta có: \(y' = 6{x^2} - 6\left( {3m - 1} \right)x + 6\left( {2{m^2} - m} \right) = 0 \Leftrightarrow {x^2} - \left( {3m - 1} \right)x + \left( {2m - 1} \right)m = 0 \Leftrightarrow \left[ \begin{array}{l}
x = m\\
x = 2m - 1
\end{array} \right.\) 

Do hàm số có \(a = 2 > 0\) nên để hàm số nghịch biến trên đoạn có độ dài bằng 4 \( \Leftrightarrow \left\{ \begin{array}{l}
m \ne 2m - 1\\
\left| {2m - 1 - m} \right| = 4
\end{array} \right.\) 

\( \Leftrightarrow \left\{ \begin{array}{l}
m \ne 1\\
\left| {m - 1} \right| = 4
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m \ne 1\\
\left[ \begin{array}{l}
m = 5\\
m =  - 3
\end{array} \right.
\end{array} \right.\).

Copyright © 2021 HOCTAP247