A. \(V = \pi \int\limits_0^2 {\left( {2 - x} \right)\,dx + \pi \int\limits_0^2 {{x^2}\,dx} } \).
B. \(V = \pi \int\limits_0^2 {\left( {2 - x} \right)\,dx} \).
C. \(V = \pi \int\limits_0^1 {x\,dx + \pi \int\limits_1^2 {\sqrt {2 - x} \,dx} } \).
D. \(V = \pi \int\limits_0^1 {{x^2}\,dx + \pi \int\limits_1^2 {\left( {2 - x} \right)\,dx} } \).
D
Điều kiện: \(x \le 2\)
Xét hương trình hoành độ giao điểm ta có:
\(\sqrt {2 - x} = x \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\2 - x = {x^2}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\{x^2} + x - 2 = 0\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\\left[ \begin{array}{l}x = - 2\\x = 1\end{array} \right.\end{array} \right. \Rightarrow x = 1\)
Khi đó, thể tích khối tròn xoay cần tính được xác được bởi công thức: \(V = \pi \int\limits_0^1 {{x^2}\,dx + \pi \int\limits_1^2 {\left( {2 - x} \right)\,dx} } \)
Chọn đáp án D.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247