Trong không gian với hệ trục tọa độ \(Oxyz\), cho biết điểm \(M(1;2;3).\) Gọi \((\alpha )\) là mặt phẳng chứa trục \(Oy\) và cách \(M\) một khoảng lớn nhất. Phương trình của \((\al...

Câu hỏi :

Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(M(1;2;3).\) Gọi \((\alpha )\) là mặt phẳng chứa trục \(Oy\) và cách \(M\) một khoảng lớn nhất. Phương trình của \((\alpha )\) là:

A. \(x + 3z = 0\).  

B. \(x + 2z = 0\).   

C. \(x - 3z = 0\).   

D. \(x = 0\). 

* Đáp án

A

* Hướng dẫn giải

Phương pháp tự luận:

+) Gọi \(H,K\)lần lượt là hình chiếu vuông góc của  \(M\)trên mặt phẳng\((\alpha )\) và trục \(Oy\).

Ta có : \(K(0;2;0)\)

\(d(M,(\alpha )) = MH \le MK\)

Vậy khoảng cách từ \(M\) đến mặt phẳng\((\alpha )\) lớn nhất khi mặt phẳng\((\alpha )\)qua \(K\) và vuông góc với\(MK\).

Phương trình mặt phẳng: \(x + 3z = 0\)

Copyright © 2021 HOCTAP247