Hãy tìm các điểm cực trị của hàm số \(y = {x^{{4 \over 5}}}{(x - 4)^{2\,}},\,\,x > 0\).

Câu hỏi :

Tìm các điểm cực trị của hàm số \(y = {x^{{4 \over 5}}}{(x - 4)^{2\,}},\,\,x > 0\).

A. x = 4 và x = \({8 \over 7}\).    

B. x = 4. 

C. x = 2.    

D. x = 2  và \(x = {4 \over 9}\). 

* Đáp án

A

* Hướng dẫn giải

Ta có: \(y = {x^{\dfrac{4}{5}}}{(x - 4)^{2\,}}\)

\(\Rightarrow y' = {\left( {{x^{\dfrac{4}{5}}}{{(x - 4)}^{2\,}}} \right)^\prime }\)

\(= \dfrac{4}{5}{x^{\dfrac{{ - 1}}{5}}}{\left( {x - 4} \right)^2} + {x^{\dfrac{4}{5}}}\left( {2x - 8} \right)\)

\( = {x^{\dfrac{{ - 1}}{5}}}\left( {x - 4} \right)\left( {\dfrac{4}{5}\left( {x - 4} \right) + 2x} \right)\)

\(= {x^{\dfrac{{ - 1}}{5}}}\left( {x - 4} \right)\left( {\dfrac{{14}}{5}x - \dfrac{{16}}{5}} \right)\)

Các điểm cực trị là \(x = 4\) và \(x = \dfrac{8}{7}\)   

Chọn đáp án A.

Copyright © 2021 HOCTAP247