A. \(\left( P \right):x + y + z - 3 = 0\).
B. \(\left( P \right):x + y - z + 1 = 0\).
C. \(\left( P \right):x - y - z + 1 = 0\).
D. \(\left( P \right):x + 2y + z - 4 = 0\).
A
Gọi \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\) lần lượt là giao điểm của \(\left( P \right)\) với các trục \(Ox,Oy,Oz\)
\( \Rightarrow \)\(\left( P \right):\dfrac{x}{a} + \dfrac{y}{b} + \dfrac{z}{c} = 1\left( {a,b,c \ne 0} \right)\)
Ta có: \(\left\{ {\begin{array}{*{20}{c}}{N \in \left( P \right)}\\{NA = NB}\\{NA = NC}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = 1}\\{\left| {a - 1} \right| = \left| {b - 1} \right|}\\{\left| {a - 1} \right| = \left| {c - 1} \right|}\end{array}} \right. \)
\(\Leftrightarrow a = b = c = 3 \Rightarrow x + y + z - 3 = 0\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247