A. \( - \dfrac{3}{4}\).
B. \(\dfrac{3}{4}\)
C. \( - \dfrac{4}{3}\)
D. \(\dfrac{4}{3}\).
A
Ta có:
\(\int {\left( {\dfrac{{4m}}{\pi } + {{\sin }^2}x} \right)\,dx} \)
\(= \int {\left( {\dfrac{{4m}}{\pi } + \dfrac{{1 - \cos 2x}}{2}} \right)} \,dx \)
\(= \int {\left( {\dfrac{{8m + \pi }}{{2\pi }} - \dfrac{{\cos 2x}}{2}} \right)\,dx} \)
\( = \left( {\dfrac{{8m + \pi }}{{2\pi }}} \right)x - \dfrac{1}{4}\int {\cos 2x\,d\left( {2x} \right)}\)
\( = \left( {\dfrac{{8m + \pi }}{{2\pi }}} \right)x - \dfrac{{\sin 2x}}{4} + C\)
Theo giả thiết ta có:
+ \(F\left( 0 \right) = 1 \Rightarrow C = 1\)
+ \(F\left( {\dfrac{\pi }{4}} \right) = \dfrac{\pi }{8}\)
\(\Rightarrow \left( {\dfrac{{8m + \pi }}{{2\pi }}} \right).\dfrac{\pi }{4} - \dfrac{1}{4} + 1 = \dfrac{\pi }{8}\)
\( \Leftrightarrow \dfrac{{8m + \pi }}{8} = \dfrac{\pi }{8} - \dfrac{3}{4} = \dfrac{{\pi - 6}}{8} \)
\(\Leftrightarrow 8m = - 6 \Rightarrow m = - \dfrac{3}{4}\).
Chọn đáp án A.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247