Cho biết đồ thị (C): \(y = \dfrac{{4x - 1} }{{x + 1}}\). Tọa độ tâm đối xứng của (C) là

Câu hỏi :

Cho đồ thị (C): \(y = \dfrac{{4x - 1} }{{x + 1}}\). Tọa độ tâm đối xứng của (C) là

A. I(- 1 ; 4)   

B. I(4 ; - 1)    

C. I(1 ; 4) 

D. \(I\left( {\dfrac{1}{ 4}; - 1} \right)\) 

* Đáp án

A

* Hướng dẫn giải

\(y = \dfrac{{4x - 1}}{{x + 1}}\)

TXĐ: D=R\{1}

\(\mathop {\lim }\limits_{x \to  \pm \infty } \dfrac{{4x - 1}}{{x + 1}} = 4\)  nên TCN: y=4

\(\left. \begin{array}{l}\mathop {\lim }\limits_{x \to {{( - 1)}^ + }} \dfrac{{4x - 1}}{{x + 1}} =  + \infty \\\mathop {\lim }\limits_{x \to {{( - 1)}^ - }} \dfrac{{4x - 1}}{{x + 1}} =  - \infty \end{array} \right\} \)\(\,\Rightarrow   TCĐ: x= -1\)

\( \Rightarrow \) tâm đối xứng I(-1,4)

Copyright © 2021 HOCTAP247