Cho biết hình chóp tứ giác đều \(S.ABCD\) có chiều cao h, góc ở đỉnh của mặt bên bằng \({60^0}\). Thể tích hình chóp là:

Câu hỏi :

Cho hình chóp tứ giác đều \(S.ABCD\) có chiều cao h, góc ở đỉnh của mặt bên bằng \({60^0}\). Thể tích hình chóp là:

A. \(\dfrac{{3{h^3}}}{2}\)    

B. \(\dfrac{{{h^3}}}{3}\)  

C. \(\dfrac{{2{h^3}}}{3}\)    

D. \(\dfrac{{{h^3}\sqrt 3 }}{3}\)  

* Đáp án

C

* Hướng dẫn giải

Gọi \(O = AC \cap BD\).

Vì chóp \(S.ABCD\) đều nên \(SO \bot \left( {ABCD} \right)\)

Đặt \(SA = SB = SC = SD = a\)

Tam giác \(SCD\) có:\(SC = SD;\widehat {CSD} = {60^0} \Rightarrow \Delta SCD\)đều\( \Rightarrow CD = SC = SD = a\)

\( \Rightarrow \) Hình vuông \(ABCD\) cạnh \(a \Rightarrow AC = BD = a\sqrt 2 \)\( \Rightarrow OC = \dfrac{1}{2}AC = \dfrac{{a\sqrt 2 }}{2}\)

\(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OC \Rightarrow \Delta SOC\) vuông tại O

\( \Rightarrow SO = \sqrt {S{C^2} - O{C^2}} \)

\(\Rightarrow h = \sqrt {{a^2} - \dfrac{{{a^2}}}{2}}  = \dfrac{{a\sqrt 2 }}{2}\) \( \Rightarrow a = h\sqrt 2 \)

\( \Rightarrow {S_{ABCD}} = {a^2} = {\left( {h\sqrt 2 } \right)^2} = 2{h^2}\)

Vậy \({V_{S.ABCD}} = \dfrac{1}{3}SO.{S_{ABCD}} = \dfrac{1}{3}h.2{h^2} = \dfrac{{2{h^3}}}{3}\)

Chọn C.

Copyright © 2021 HOCTAP247