Tìm \(m\) để hàm số \(y = \frac{1}{3}{x^3} - \left( {m + 1} \right){x^2} + \left( {{m^2} + m} \right)x - 2\) có cực đại và cực ti

Câu hỏi :

Tìm \(m\) để hàm số \(y = \frac{1}{3}{x^3} - \left( {m + 1} \right){x^2} + \left( {{m^2} + m} \right)x - 2\) có cực đại và cực tiểu

A. \(m >  - 2\)

B. \(m >  - \frac{1}{3}\)

C. \(m >  - \frac{2}{3}\)

D. \(m>-1\)

* Đáp án

D

* Hướng dẫn giải

\(y' = {x^2} - 2\left( {m + 1} \right)x + \left( {{m^2} + m} \right)\). Để hàm số có cực đại và cực tiểu thì PT \(y'=0\) có 2 nghiệm phân biệt \( \Leftrightarrow \Delta ' = {\left( {m + 1} \right)^2} - \left( {{m^2} + m} \right) = m + 1 > 0 \Leftrightarrow m >  - 1\) 

Copyright © 2021 HOCTAP247