Giá trị nhỏ nhất của hàm số sau \(y = {x^3} - 3x + 5\) trên đoạn [2 ; 4] là:

Câu hỏi :

Giá trị nhỏ nhất của hàm số \(y = {x^3} - 3x + 5\) trên đoạn [2 ; 4] là:

A. 3     

B.

C.

D.

* Đáp án

A

* Hướng dẫn giải

\(y = {x^3} - 3x + 5\)

TXĐ:\(D = \mathbb{R}\)

\(\begin{array}{l}y' = 3{x^2} - 3\\y' = 0 \Leftrightarrow 3{x^2} - 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 1\end{array} \right.\end{array}\)

\(\begin{array}{l} - 1 \notin \left[ {2,4} \right],1 \in \left[ {2,4} \right]\\f\left( 1 \right) = 3\\f\left( 2 \right) = 7\\f\left( 4 \right) = 57\end{array}\)

Suy ra GTNN=3

Copyright © 2021 HOCTAP247