Cho khối chóp \(S.ABC\)có đáy \(ABC\) là tam giác đều cạnh \(a\). Hai mặt bên \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) cùng vuông góc với đáy. Tính thể tích khối chóp b...

Câu hỏi :

Cho khối chóp \(S.ABC\)có đáy \(ABC\) là tam giác đều cạnh \(a\). Hai mặt bên \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) cùng vuông góc với đáy. Tính thể tích khối chóp biết \(SC = a\sqrt 3 \)

A. \(\dfrac{{2{a^3}\sqrt 6 }}{9}\)   

B. \(\dfrac{{{a^3}\sqrt 6 }}{{12}}\) 

C. \(\dfrac{{{a^3}\sqrt 3 }}{4}\)   

D. \(\dfrac{{{a^3}\sqrt 3 }}{2}\) 

* Đáp án

B

* Hướng dẫn giải

Hai mặt bên \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) cùng vuông góc với đáy

\( \Rightarrow SA \bot \left( {ABC} \right)\)

Áp dụng định lí Py – ta – go ta có:

\(SA = \sqrt {S{C^2} - A{C^2}}  = \sqrt {3{a^2} - {a^2}}  = a\sqrt 2 \)

Khi đó:

\(V = \dfrac{1}{3}SA.{S_{ABC}} = \dfrac{1}{3}.a\sqrt 2 .\dfrac{1}{2}a.a.\sin {60^0} = \dfrac{{{a^3}\sqrt 6 }}{{12}}\)

Chọn đáp án B.

Copyright © 2021 HOCTAP247