Phương trình \({z^2} - 2z + 3 = 0\) có các nghiệm là:

Câu hỏi :

Phương trình \({z^2} - 2z + 3 = 0\) có các nghiệm là:

A. \(2 \pm 2\sqrt 2 i\).      

B. \( - 2 \pm 2\sqrt 2 i\). 

C. \( - 1 \pm 2\sqrt 2 i\).    

D. \(1 \pm \sqrt 2 i\).  

* Đáp án

D

* Hướng dẫn giải

\(\begin{array}{l}{z^2} - 2z + 3 = 0\\ \Leftrightarrow \left( {{z^2} - 2z + 1} \right) + 2 = 0\\ \Leftrightarrow {\left( {z - 1} \right)^2} + 2 = 0\\ \Leftrightarrow {\left( {z - 1} \right)^2} =  - 2\\ \Rightarrow \left[ \begin{array}{l}z - 1 = i\sqrt 2 \\z - 1 =  - i\sqrt 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}z = 1 + i\sqrt 2 \\z = 1 - i\sqrt 2 \end{array} \right.\end{array}\) 

Copyright © 2021 HOCTAP247