Câu hỏi :

Chọn phương án đúng.

A. \(\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{{dx}}{{{{\sin }^2}x}}}  =  - \cot x\left| {\dfrac{\pi }{4} - \dfrac{\pi }{4} =  - 2} \right.\) 

B. \(\int\limits_2^1 {dx}  = 1\). 

C. \(\int\limits_{ - e}^e {\dfrac{{dx}}{x} = ln|2e|}  - \ln | - e| = \ln 2\).  

D. Cả 3 phương án đều sai. 

* Đáp án

D

* Hướng dẫn giải

+ \(\int\limits_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} {\dfrac{{dx}}{{{{\sin }^2}x}}}  =  - \cot x\left| {_{ - \dfrac{\pi }{4}}^{\dfrac{\pi }{4}} =  - 1 - } \right.1 \)\(\,=  - 2.\) sai vì hàm số không liên tục

+ \(\int\limits_2^1 {dx}  = 1 =  - \int\limits_1^2 {dx}  =  - \left( x \right)\left| \begin{array}{l}^2\\_1\end{array} \right. \)\(\,=  - \left( {2 - 1} \right) =  - 1.\)

+ \(\int\limits_{ - e}^e {\dfrac{{dx}}{x}}  = \ln \left| x \right|\left| \begin{array}{l}^e\\_{ - e}\end{array} \right.\)\(\, = \ln \left| e \right| - \ln \left| { - e} \right| = 0.\)

Chọn đáp án D.

Copyright © 2021 HOCTAP247