Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a, tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính thể tích khối chóp S.ABC.

Câu hỏi :

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a, tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính thể tích khối chóp S.ABC.

A. \(V = \dfrac{{{a^3}}}{2}\)   

B. \(V = {a^3}\) 

C. \(V = \dfrac{{3{a^3}}}{2}\)  

D. \(V = \dfrac{{{a^3}}}{2}\)

* Đáp án

B

* Hướng dẫn giải

Tam giác SAB nằm trong mặt phẳng vuông góc với đáy.

Gọi H là trung điểm của AB

\( \Rightarrow SH \bot AB\) hay \(SH \bot \left( {ABC} \right)\)

Ta có: \(SA = SB = AB = 2a\)

\(\Rightarrow SH = \sqrt {4{a^2} - {a^2}}  = a\sqrt 3 \)

+ \({S_{ABC}} = \dfrac{1}{2}a\sqrt 3 .2a = {a^2}\sqrt 3 \)

Khi đó \({V_{S.ABC}} = \dfrac{1}{3}.a\sqrt 3 .{a^2}\sqrt 3  = {a^3}\)

Chọn đáp án B.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Văn Lang

Số câu hỏi: 49

Copyright © 2021 HOCTAP247