A. 3
B. 4
C. 5
D. 6
A
Phương trình \({z^2} + az + b = 0\) nhận \({z_1} = 1 - 2i\)\( \to \) nghiệm còn lại là \({z_2} = 1 + 2i\)
Theo Vi- et ta có:
\(\begin{array}{l}y' = 0 \Leftrightarrow 4(m + 1){x^3} - 2mx = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \dfrac{{2m}}{{4m + 4}}{\rm{ (1)}}\end{array} \right.\\y = (m + 1){x^4} - m{x^2} + 3\\\dfrac{{2m}}{{4m + 4}} > 0 \Leftrightarrow \left[ \begin{array}{l}m > 0\\m < - 1\end{array} \right. \\ \Rightarrow m \in \left( { - \infty , - 1} \right) \cup \left( {0, + \infty } \right)\end{array}\)
\( \Rightarrow a + b = 3\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247