Hãy tìm miền xác định của hàm số \(y = \log \left( {{{1 - 5x} \over {2 - x}}} \right)\).

Câu hỏi :

Tìm miền xác định của hàm số \(y = \log \left( {{{1 - 5x} \over {2 - x}}} \right)\).

A. \(D = \left( { - \infty ;{1 \over 5}} \right) \cup \left( {2; + \infty } \right)\).       

B. \(D = \left( { - \infty ;2} \right) \cup \left( {{1 \over 5}; + \infty } \right)\). 

C. \(D = ( - \infty ;2] \cup \left[ {{1 \over 5}; + \infty } \right)\)  

D. \(\left( { - \infty ;{1 \over 5}} \right) \cap \left( {2; + \infty } \right)\). 

* Đáp án

A

* Hướng dẫn giải

Điều kiện xác định: \(\dfrac{{1 - 5x}}{{2 - x}} > 0 \)

\(\Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}1 - 5x > 0\\2 - x > 0\end{array} \right.\\\left\{ \begin{array}{l}1 - 5x < 0\\2 - x < 0\end{array} \right.\end{array} \right.\)

 

\(\Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x < \dfrac{1}{5}\\x < 2\end{array} \right.\\\left\{ \begin{array}{l}x > \dfrac{1}{5}\\x > 2\end{array} \right.\end{array} \right. \)

\(\Leftrightarrow \left[ \begin{array}{l}x < \dfrac{1}{5}\\x > 2\end{array} \right.\)

Chọn đáp án A.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Văn Lang

Số câu hỏi: 49

Copyright © 2021 HOCTAP247