A. \(\dfrac{V}{{27}}\)
B. \(\dfrac{V}{{81}}\)
C. \(\dfrac{V}{9}\)
D. \(\dfrac{V}{3}\)
A
Ta có: \(SA' = \dfrac{1}{3}SA \)
\(\Rightarrow \left\{ \begin{array}{l}SB' = \dfrac{1}{3}SB\\SC' = \dfrac{1}{3}SC\\SD' = \dfrac{1}{3}SD\end{array} \right.\)
Khi đó ta có:
\(\dfrac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = \dfrac{{SA'}}{{SA}}.\dfrac{{SB'}}{{SB}}.\dfrac{{SC'}}{{SC}} \)
\(\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= {\left( {\dfrac{1}{3}} \right)^3} = \dfrac{1}{{27}} \)
\(\Rightarrow {V_{S.A'B'C'}} = \dfrac{1}{{27}}{V_{S.ABC}}\)
\(\dfrac{{{V_{S.A'D'C'}}}}{{{V_{S.ADC}}}} = \dfrac{{SA'}}{{SA}}.\dfrac{{SD'}}{{SD}}.\dfrac{{SC'}}{{SC}}\)
\(\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= {\left( {\dfrac{1}{3}} \right)^3} = \dfrac{1}{{27}} \)
\(\Rightarrow {V_{S.A'D'C'}} = \dfrac{1}{{27}}{V_{S.ADC}}\)
\( \Rightarrow {V_{S.A'B'C'D'}} = {V_{S.A'B'C'}} + {V_{S.A'D'C'}} \)\(\,= \dfrac{1}{{27}}\left( {{V_{S.ABC}} + {V_{S.ADC}}} \right) = \dfrac{V}{{27}}\)
Chọn đáp án A.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247