Tính diện tích \(S\) của hình phẳng \(\left( H \right)\) giới hạn bởi các đường cong\(y = - {x^3} + 12x\) và \(y = - {x^2}\)

Câu hỏi :

Tính diện tích \(S\) của hình phẳng \(\left( H \right)\) giới hạn bởi các đường cong\(y =  - {x^3} + 12x\) và \(y =  - {x^2}\)

A. \(S = \dfrac{{397}}{4}\)  

B. \(S = \dfrac{{343}}{{12}}\) 

C. \(S = \dfrac{{793}}{4}\)  

D. \(S = \dfrac{{937}}{{12}}\) 

* Đáp án

D

* Hướng dẫn giải

- Xét pt hoành độ giao điểm: \( - {x^3} + 12x =  - {x^2} \to  - {x^3} + {x^2} + 12x = 0\)

  \( \to \) \(x =  - 3;x = 0\) hoặc \(x = 4\)

Diện tích của hình phẳng \(H\) là: \( - \int\limits_{ - 3}^0 {\left| { - {x^3} + {x^2} + 12x} \right|}  + \int\limits_0^4 {\left| { - {x^3} + {x^2} + 12x} \right|}  = \dfrac{{937}}{{12}}\)

Chọn D

Copyright © 2021 HOCTAP247