Gọi \(M\)và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = - {x^4} + 8{x^2} - 2\) trên đoạn \(\left[ { - 3;1} \right]\). Tính \(M + m\) ?

Câu hỏi :

Gọi \(M\)và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y =  - {x^4} + 8{x^2} - 2\) trên đoạn \(\left[ { - 3;1} \right]\). Tính \(M + m\) ?

A. \( - 25\)  

B. \( - 6\) 

C. \( - 48\)  

D. \(3\)   

* Đáp án

D

* Hướng dẫn giải

 \(y' =  - 4{x^3} + 16x\), \(x \in \left[ { - 3;1} \right]\)

\(y' = 0 \leftrightarrow \)\(x =  - 2\); \(x = 0\); \(x = 2\)

Ta có BBT

Vậy \(M + m = 14 + ( - 11) = 3\)

Chọn D

Copyright © 2021 HOCTAP247