A. \(T = 47\)
B. \(T = 55\)
C. \(T = 51\)
D. \(T = 49\)
C
Giả sử \(I\left( {{x_0};{y_0};{z_0}} \right)\) là điểm thỏa mãn:
\(2\overrightarrow {IA} {\rm{\;}} - 7\overrightarrow {IB} {\rm{\;}} + 4\overrightarrow {IC} {\rm{\;}} = \vec 0{\rm{\;}} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{2\left( {1 - {x_0}} \right) - 7\left( { - 1 - {x_0}} \right) + 4\left( {3 - {x_0}} \right) = 0}\\{2\left( {1 - {y_0}} \right) - 7\left( {2 - {y_0}} \right) + 4\left( { - 1 - {y_0}} \right) = 0}\\{2\left( { - 1 - {z_0}} \right) - 7\left( { - {z_0}} \right) + 4\left( { - 2 - {z_0}} \right) = 0}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_0} = {\rm{\;}} - 21}\\{{y_0} = 16}\\{{z_0} = 10}\end{array}} \right.\)
\( \Rightarrow I\left( { - 21;16;10} \right) \in \left( S \right)\), (do \({\left( { - 21 - 1} \right)^2} + {16^2} + {\left( {10 + 1} \right)^2} = 861\))
Khi đó,
\(P = 2M{A^2} - 7M{B^2} + 4M{C^2} = 2{\overrightarrow {MA} ^2} - 7{\overrightarrow {MB} ^2} + 4{\overrightarrow {MC} ^2}\)
\( = 2{\left( {\overrightarrow {MI} {\rm{\;}} + \overrightarrow {IA} } \right)^2} - 7{\left( {\overrightarrow {MI} {\rm{\;}} + \overrightarrow {IB} } \right)^2} + 4{\left( {\overrightarrow {MI} {\rm{\;}} + \overrightarrow {IC} } \right)^2}\)
\( = {\rm{\;}} - M{I^2} + 2.\overrightarrow {MI} .\left( {2\overrightarrow {IA} {\rm{\;}} - 7\overrightarrow {IB} {\rm{\;}} + 4\overrightarrow {IC} } \right) + 2I{A^2} - 7I{B^2} + 4I{C^2}\)
\( = {\rm{\;}} - M{I^2} + 2I{A^2} - 7I{B^2} + 4I{C^2}\)
Để \(P = 2M{A^2} - 7M{B^2} + 4M{C^2}\) đạt GTNN thì MI có độ dài lớn nhất
\( \Leftrightarrow MI\) là đường kính \( \Leftrightarrow M\) là điểm đối xứng của \(I\left( { - 21;16;10} \right)\) qua tâm \(T\left( {1;0; - 1} \right)\) của (S)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_M} - 21 = 2}\\{{y_M} + 16 = 0}\\{{z_M} + 10 = {\rm{\;}} - 2}\end{array}} \right. \Rightarrow M\left( {23; - 16; - 12} \right) \Rightarrow \)\(T = \left| a \right| + \left| b \right| + \left| c \right| = 23 + 16 + 12 = 51\).
Chọn C.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247