A. \(T = 0.\)
B. \(T = {\rm{\;}} - 1.\)
C. \(T = 1.\)
D. \(T = \dfrac{{ - 2}}{3}.\)
D
Ta có:
\(\begin{array}{*{20}{l}}{{{\log }_{\dfrac{1}{3}}}\dfrac{{1 - 2x}}{x} > 0{\rm{\;}} \Leftrightarrow 0 < \dfrac{{1 - 2x}}{x} < 1}\\{ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < \dfrac{{1 - 2x}}{x}}\\{\dfrac{{1 - 2x}}{x} < 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < \dfrac{1}{2}}\\{\dfrac{{1 - 3x}}{x} < 0}\end{array}} \right.}\\{ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < \dfrac{1}{2}}\\{0 < x < \dfrac{1}{3}}\end{array}} \right. \Leftrightarrow 0 < x < \dfrac{1}{3}}\end{array}\).
\( \Rightarrow \) Tập nghiệm của bất phương trình là \(\left( {0;\dfrac{1}{3}} \right)\) \( \Rightarrow a = 0;{\mkern 1mu} {\mkern 1mu} b = \dfrac{1}{3}\).
Vậy \(T = 3a - 2b = 3.0 - 2.\dfrac{1}{3} = {\rm{\;}} - \dfrac{2}{3}\).
Chọn D.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247