Cho \(\int\limits_0^1 {\dfrac{{dx}}{{\sqrt {x + 1} {\rm{\;}} + \sqrt x }} = \dfrac{2}{3}\left( {\sqrt a {\rm{\;}} - b} \right)} \) với a,b là các số nguyên dương. Giá trị của biểu...

Câu hỏi :

Cho \(\int\limits_0^1 {\dfrac{{dx}}{{\sqrt {x + 1} {\rm{\;}} + \sqrt x }} = \dfrac{2}{3}\left( {\sqrt a {\rm{\;}} - b} \right)} \) với a,b là các số nguyên dương. Giá trị của biểu thức \(T = a + b\) là:

A. 10    

B.

C.

D.

* Đáp án

A

* Hướng dẫn giải

Ta có

\(\begin{array}{*{20}{l}}{\int\limits_0^1 {\dfrac{{dx}}{{\sqrt {x + 1} {\rm{\;}} + \sqrt x }}} {\rm{\;}} = \int\limits_0^1 {\dfrac{{\sqrt {x + 1} {\rm{\;}} - \sqrt x }}{{x + 1 - x}}} dx}\\{ = \int\limits_0^1 {\left( {\sqrt {x + 1} {\rm{\;}} - \sqrt x } \right)dx} {\rm{\;}} = \left. {\dfrac{2}{3}\left[ {{{\left( {\sqrt {x + 1} } \right)}^3} - {{\left( {\sqrt x } \right)}^3}} \right]} \right|_0^1}\\{ = \dfrac{2}{3}\left[ {\left( {\sqrt 8 {\rm{\;}} - 1} \right) - \left( {1 - 0} \right)} \right] = \dfrac{2}{3}\left( {\sqrt 8 {\rm{\;}} - 2} \right)}\end{array}\)

Khi đó \(a = 8;{\mkern 1mu} {\mkern 1mu} b = 2.\)

Vậy \(T = a + b = 8 + 2 = 10.\)

Chọn A.

Copyright © 2021 HOCTAP247