A. 132 triệu
B. 96 triệu
C. 32 triệu
D. 128 triệu
D
Gắn hệ trục tọa độ như hình vẽ.
Parbol đi qua gốc tọa độ và điểm \(A,{\mkern 1mu} {\mkern 1mu} B\) có phương trình \(y = \dfrac{{{x^2}}}{2}\).
Parbol đi qua gốc tọa độ và điểm \(B,{\mkern 1mu} {\mkern 1mu} C\) có phương trình \(x = \dfrac{{{y^2}}}{2} \Leftrightarrow {y^2} = 2x \Leftrightarrow y = \sqrt {2x} {\mkern 1mu} {\mkern 1mu} \left( {x \ge 0} \right)\).
Diện tích 1 cánh hoa là diện tích hình phẳng giới hạn bởi parabol \(y = \dfrac{{{x^2}}}{2}\);\(y = \sqrt {2x} \), đường thẳng \(x = 2;{\mkern 1mu} {\mkern 1mu} x = 0\) là \({S_1} = \int\limits_0^2 {\left( {\sqrt {2x} {\rm{\;}} - \dfrac{{{x^2}}}{2}} \right)dx} {\rm{\;}} = \dfrac{4}{3}\).
\( \Rightarrow \) Diện tích phần tráng men là: \(S = 4{S_1} = \dfrac{{16}}{3}{\mkern 1mu} {\mkern 1mu} \left( {{m^2}} \right)\).
Vậy số tiền cần phải trả là \(T = 24.\dfrac{{16}}{3} = 128\) triệu.
Chọn D.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247