A. \(\frac{1}{4}\)
B. \(\frac{{2024}}{{2023}}\)
C. \(\frac{{2022}}{{2023}}\)
D. \(\frac{{2020}}{{2023}}\)
C
Ta có \(f(x)= \ln \dfrac{{x + 1}}{{x + 4}}\)\( \Rightarrow f'\left( x \right) = \dfrac{{{{\left( {\dfrac{{x + 1}}{{x + 4}}} \right)}'}}}{{\dfrac{{x + 1}}{{x + 4}}}} = \dfrac{\dfrac{3}{{{{\left( x + 4 \right)}^2}}}}{\dfrac{x + 1}{x + 4}}\)
\( \Rightarrow f'\left( x \right) = \dfrac{3}{{\left( {x + 1} \right)\left( {x + 4} \right)}}\)
\( \Rightarrow f'\left( x \right) = \dfrac{{\left( {x + 4} \right) - \left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x + 4} \right)}} = \dfrac{1}{{x + 1}} - \dfrac{1}{{x + 4}}\)
Khi đó \(P = f'\left( 0 \right) + f'\left( 3 \right) + f'\left( 6 \right) + ... + f'\left( {2019} \right)\)
\(\begin{array}{l} \Rightarrow P = 1 - \dfrac{1}{4} + \dfrac{1}{4} - \dfrac{1}{7} + \dfrac{1}{7} - \dfrac{1}{{10}} + ... + \dfrac{1}{{2020}} - \dfrac{1}{{2023}}\\ \Leftrightarrow P = 1 - \dfrac{1}{{2023}} = \dfrac{{2022}}{{2023}}\end{array}\)
Chọn C.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247