Số tiếp tuyến của đồ thị hàm số sau \(y = {x^4} - 2{x^2} - 3\) song song với trục hoành là : 

Câu hỏi :

Số tiếp tuyến của đồ thị hàm số \(y = {x^4} - 2{x^2} - 3\) song song với trục hoành là : 

A. một  

B. ba 

C. hai   

D. không 

* Đáp án

C

* Hướng dẫn giải

Phương trình trục hoành: \(y = 0\).

Ta có \(y' = 4{x^3} - 4x \Rightarrow \) Hệ số góc của tiếp tuyến tại điểm có hoành độ \(x = {x_0}\) là \(y'\left( {{x_0}} \right) = 4x_0^3 - 4{x_0}\).

Tiếp tuyến // Ox \( \Rightarrow y'\left( {{x_0}} \right) = 0 \Leftrightarrow 4x_0^3 - 4{x_0} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x_0} = 0}\\{{x_0} = {\rm{\;}} \pm 1}\end{array}} \right.\).

Khi \(x =  \pm 1\) ta tìm được hai tiếp tuyến trùng nhau là  \(y =  - 3\)

Vậy có hai tiếp tuyến song song với trục hoành.

Chọn C.

Copyright © 2021 HOCTAP247