Cho biết hình hộp đứng ABCD.A’B’C’D’ có đáy ABCD là một hình thoi cạnh a, \(\widehat {ABC} = {120^0}\); \(AA' = 4a\) Tính khoảng cách giữa hai đường thẳng A’C và BB’?

Câu hỏi :

Cho hình hộp đứng ABCD.A’B’C’D’ có đáy ABCD là một hình thoi cạnh a, \(\widehat {ABC} = {120^0}\); \(AA' = 4a\)  Tính khoảng cách giữa hai đường thẳng A’C và BB’?

A. \(\dfrac{{a\sqrt 3 }}{2}\) 

B. \(a\sqrt 3 \) 

C. \(\dfrac{a}{2}\)   

D. \(\dfrac{a}{{\sqrt 3 }}\) 

* Đáp án

C

* Hướng dẫn giải

Ta có

\(\begin{array}{*{20}{l}}{\rm{\;}}&{BB'//CC' \Rightarrow BB'//\left( {ACC'} \right) \supset AC'}\\{\rm{\;}}&{ \Rightarrow d\left( {AC';BB'} \right) = d\left( {BB';\left( {ACC'} \right)} \right) = d\left( {B';\left( {ACC'} \right)} \right)}\end{array}\)

Gọi \(O = A'C' \cap B'D'\) ta có :

 \(\left\{ {\begin{array}{*{20}{l}}{\rm{\;}}&{B'O \bot A'C'}\\{\rm{\;}}&{B'O \bot CC'}\end{array}} \right. \Rightarrow B'O \bot \left( {ACC'} \right) \Rightarrow d\left( {B';\left( {ACC'} \right)} \right) = B'O\)

Tam giác A’B’D’ là tam giác đều cạnh a

\( \Rightarrow B'D' = a \Rightarrow B'O = \dfrac{a}{2}\)

Chọn C.

Copyright © 2021 HOCTAP247