Cho biết hình chóp đều S.ABC có độ dài cạnh đáy là 2a, mặt bên tạo với mặt đáy một góc \({60^0}\). Tính thế tích của khối chóp S.ABC?

Câu hỏi :

Cho hình chóp đều S.ABC có độ dài cạnh đáy là 2a, mặt bên tạo với mặt đáy một góc \({60^0}\). Tính thế tích của khối chóp S.ABC?

A. \(\dfrac{{{a^3}\sqrt 3 }}{3}\)   

B. \(\dfrac{{{a^3}\sqrt 3 }}{{24}}\)    

C. \(\dfrac{{2{a^3}\sqrt 3 }}{3}\)  

D. \({a^3}\sqrt 3 \)   

* Đáp án

A

* Hướng dẫn giải

 

Gọi \(G\) là trọng tâm tam giác ABC, \(D\) là trung điểm BC.

S.ABC là hình chóp đều nên chân đường cao hạ từ \(S\) xuống mp đáy là trọng tâm \(G\) của đáy

Suy ra \(SG \bot \left( {ABC} \right) \Rightarrow SG \bot BC\)

Tam giác ABC là tam giác đều nên \(AD \bot BC\)

\( \Rightarrow BC \bot \left( {SAD} \right) \Rightarrow BC \bot SD\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{\left( {SBC} \right) \cap \left( {ABC} \right) = BC}\\{SD \in \left( {SBC} \right),SD \bot BC}\\{AD \in \left( {ABC} \right),AD \bot BC}\end{array}} \right. \Rightarrow \angle \left( {\left( {SBC} \right);\left( {ABC} \right)} \right) = \angle SDA\).

 

Góc giữa mặt bên và mặt đáy bằng \({60^0}\) nên \(\angle SDA = {60^0}\).

Lại có:\(AD = \dfrac{{\sqrt 3 }}{2}BC = \sqrt 3 a \Rightarrow DG = \dfrac{1}{3}AD = \dfrac{{\sqrt 3 }}{3}a\).

Chọn A.

Copyright © 2021 HOCTAP247