Cho hàm số sau \(y = {x^2} + 5x + 4\) có đồ thị \(\left( C \right)\). Tìm tiếp tuyến của \(\left( C \right)\) tại các giao điểm của \(\left( C \right)\) với trục \(Ox\).

Câu hỏi :

Cho hàm số \(y = {x^2} + 5x + 4\) có đồ thị \(\left( C \right)\). Tìm tiếp tuyến của \(\left( C \right)\) tại các giao điểm của \(\left( C \right)\) với trục \(Ox\).

A. \(y = 3x - 3\)hoặc\(y =  - 3x + 12\).

B. \(y = 3x + 3\)hoặc\(y =  - 3x - 12\).

C. \(y = 2x - 3\) hoặc \(y =  - 2x + 3\).

D. \(y = 2x + 3\) hoặc \(y =  - 2x - 3\).

* Đáp án

B

* Hướng dẫn giải

Đạo hàm: \({y^/} = {f^/}\left( x \right) = 2x + 5\)

Hoành độ giao điểm của \(\left( C \right)\) với trục \(Ox\) thỏa mãn: \({x^2} + 5x + 4 = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 4\\x =  - 1\end{array} \right.\)

+ Với \(x =  - 4;y = 0 \Rightarrow \) PTTT tại điểm \(\left( { - 4;0} \right)\) có hệ số góc là: \(k = {f^/}\left( { - 4} \right) =  - 3\)

Suy ra PTTT của \(\left( C \right)\) tại \(\left( { - 4;0} \right)\) là: \(y =  - 3\left( {x + 4} \right) \Leftrightarrow y =  - 3x - 12\).

+ Với \(x =  - 1;y = 0 \Rightarrow \) PTTT tại điểm \(\left( { - 1;0} \right)\) có hệ số góc là: \(k = {f^/}\left( { - 1} \right) = 3\)

Suy ra PTTT của \(\left( C \right)\) tại \(\left( { - 1;0} \right)\) là: \(y = 3\left( {x + 1} \right) \Leftrightarrow y = 3x + 3\). 

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Bình Phú

Số câu hỏi: 50

Copyright © 2021 HOCTAP247