Cho chuyển động thẳng xác định bởi phương trình \(S = {t^3} + 3{t^2} - 9t + 27\), trong đó \(t\) tính bằng giây \(\left( s \right)\) và \(S\) được tính bằng mét \(\left( {\rm{m}} \...

Câu hỏi :

Cho chuyển động thẳng xác định bởi phương trình \(S = {t^3} + 3{t^2} - 9t + 27\), trong đó \(t\) tính bằng giây \(\left( s \right)\) và \(S\) được tính bằng mét \(\left( {\rm{m}} \right)\). Gia tốc của chuyển động tại thời điểm vận tốc triệt tiêu là bao nhiêu?

A. \(0{\rm{m/}}{{\rm{s}}^2}{\rm{.}}\).

B. \(6{\rm{m/}}{{\rm{s}}^2}{\rm{.}}\)

C. \(24{\rm{m/}}{{\rm{s}}^2}{\rm{.}}\)

D. \(12{\rm{m/}}{{\rm{s}}^2}{\rm{.}}\)

* Đáp án

D

* Hướng dẫn giải

Vận tốc của chuyển động lúc \(t\) là: \(v\left( t \right) = S' = {\left( {{t^3} + 3{t^2} - 9t + 27} \right)^/} = 3{t^2} + 6t - 9.\)

Gia tốc của chất điểm lúc \(t\) là: \(a\left( t \right) = v' = {\left( {3{t^2} + 6t - 9} \right)^/} = 6t + 6.\)

Vận tốc triệt tiêu khi \(v\left( t \right) = 0 \Leftrightarrow 3{t^2} + 6t - 9 = 0\), suy ra \(t = 1.\)

Do đó \(a\left( 1 \right) = 6.1 + 6 = 12{\rm{m/}}{{\rm{s}}^{\rm{2}}}{\rm{.}}\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Bình Phú

Số câu hỏi: 50

Copyright © 2021 HOCTAP247