Cho hàm số sau \(f\left( x \right) = a\sin x + b\cos x + 1\). Để \({f^/}\left( 0 \right) = \frac{1}{2}\) và \(f\left( { - \frac{\pi }{4}} \right) = 1\) thì giá trị của \(a,b\) bằng...

Câu hỏi :

Cho hàm số \(f\left( x \right) = a\sin x + b\cos x + 1\). Để \({f^/}\left( 0 \right) = \frac{1}{2}\) và \(f\left( { - \frac{\pi }{4}} \right) = 1\) thì giá trị của \(a,b\) bằng bao nhiêu?

A. \(a = b = \frac{{\sqrt 2 }}{2}\).

B. \(a = \frac{{\sqrt 2 }}{2};b =  - \frac{{\sqrt 2 }}{2}\).

C. \(a = \frac{1}{2};b =  - \frac{1}{2}\).

D. \(a = b = \frac{1}{2}\).

* Đáp án

D

* Hướng dẫn giải

Ta có: \({f^/}\left( x \right) = a\cos x - b\sin x\).

Do \(\left\{ \begin{array}{l}{f^/}\left( 0 \right) = \frac{1}{2}\\f\left( { - \frac{\pi }{4}} \right) = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\ - \frac{{\sqrt 2 }}{2}a + \frac{{\sqrt 2 }}{2}b + 1 = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = \frac{1}{2}\\a = \frac{1}{2}\end{array} \right.\). 

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Bình Phú

Số câu hỏi: 50

Copyright © 2021 HOCTAP247