A. Dãy số \(({u_n})\)với\({u_n} = \frac{1}{n} + 3\).
B. Dãy số \(({u_n})\)với \({u_n} = \frac{1}{{n - 1}}\).
C. Dãy số \(({u_n})\)với \({u_n} = {\left( { - 1} \right)^n}{.2^n}\).
D. Dãy số \(({u_n})\)với \({u_n} = \frac{{2n + 1}}{{n + 2}}\).
D
\({u_{n + 1}} - {u_n} = \frac{{2\left( {n + 1} \right) + 1}}{{\left( {n + 1} \right) + 2}} - \frac{{2n + 1}}{{n + 2}}\)\( = \frac{{\left( {2n + 3} \right)\left( {n + 2} \right) - \left( {n + 3} \right)\left( {2n + 1} \right)}}{{\left( {n + 3} \right)\left( {n + 2} \right)}} = \frac{{2{n^2} + 7n + 6 - 2{n^2} - 7n - 3}}{{\left( {n + 3} \right)\left( {n + 2} \right)}}\)
\( = \frac{3}{{\left( {n + 3} \right)\left( {n + 2} \right)}} > 0,\forall n \in {\rm{N*}}\) Þ Dãy số \(({u_n})\)với \({u_n} = \frac{{2n + 1}}{{n + 2}}\) là dãy số tăng. Þ D
Trắc nghiệm:
Dãy số \(({u_n})\)với\({u_n} = \frac{1}{n} + 3\), hay với \({u_n} = \frac{1}{{n - 1}}\) là các dãy giảm.
Dãy số \(({u_n})\)với \({u_n} = {\left( { - 1} \right)^n}{.2^n}\) là dãy đan dấu không tăng, giảm.
Vậy D là đáp án tìm được do loại trừ.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247