Cho lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(G,G'\) lần lượt là trọng tâm của tam giác \(ABC\) và \(A'B'C'\), \(O\) là trung điểm của \(GG'\). Thiết diện tạo bởi mặt phẳng \(\left(...

Câu hỏi :

Cho lăng trụ tam giác \(ABC.A'B'C'\). Gọi \(G,G'\) lần lượt là trọng tâm của tam giác \(ABC\) và \(A'B'C'\), \(O\) là trung điểm của \(GG'\). Thiết diện tạo bởi mặt phẳng \(\left( {ABO} \right)\) với lăng trụ là một hình thang. Tính tỉ số \(k\) giữa đáy lớn và đáy bé của thiết diện.

A. \(k = 2\).

B. \(k = 3\).

C. \(k = \frac{3}{2}\).

D. \(k = \frac{5}{2}\).

* Đáp án

B

* Hướng dẫn giải

Gọi \(I,I'\) lần lượt là trung điểm của \(BC,B'C'\). Đường thẳng \(AO\) cắt \(II',A'I'\) lần lượt tại \(K\) và \(H\). Đường thẳng đi qua \(H\), song song với \(A'B'\) lần lượt cắt \(A'C',B'C'\) tại \(M\) và \(N\). Thiết diện tạo bởi mặt phẳng \(\left( {ABO} \right)\) với lăng trụ là hình thang \(ABNM\).

Xét \(\Delta HAA'\) ta có \(\frac{{HG'}}{{HA'}} = \frac{1}{2},\frac{{I'G'}}{{G'A'}} = \frac{1}{2}\) suy ra \(\frac{{KI'}}{{AA'}} = \frac{{HI'}}{{HA'}} = \frac{1}{4} \Rightarrow \frac{{KI'}}{{KI}} = \frac{1}{3}\).

Vì \(\Delta NI'K \sim \Delta BIK\) nên \(\frac{{NI'}}{{CI'}} = \frac{{NI'}}{{IB}} = \frac{{KI'}}{{KI}} = \frac{1}{3}\). Từ đó \(\frac{{MN}}{{AB}} = \frac{{MN}}{{A'B'}} = \frac{{C'N}}{{CB'}} = \frac{1}{3}\).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Bình Phú

Số câu hỏi: 50

Copyright © 2021 HOCTAP247