Cho hình chóp \(S.ABC\) có \(SA = SB = SC\) và ba đường thẳng \(SA,SB,SC\) đôi một vuông góc. Gọi \(M\) là trung điểm của \(SB\). Hãy tìm côsin của góc \(\alpha \) tạo bởi hai đườn...

Câu hỏi :

Cho hình chóp \(S.ABC\) có \(SA = SB = SC\) và ba đường thẳng \(SA,SB,SC\) đôi một vuông góc. Gọi \(M\) là trung điểm của \(SB\). Tìm côsin của góc \(\alpha \) tạo bởi hai đường thẳng \(AM\) và \(BC\).

A. \(\cos \alpha  = \frac{{\sqrt {10} }}{{10}}\).

B. \(\cos \alpha  = \frac{{\sqrt {10} }}{5}\).

C. \(\cos \alpha  = \frac{{\sqrt 5 }}{{10}}\).

D. \(\cos \alpha  = \frac{{\sqrt 2 }}{2}\).

* Đáp án

A

* Hướng dẫn giải

Gọi \(N\) là trung điểm của \(SC\). Góc \(\left( {AM,BC} \right) = \left( {AM,MN} \right)\)

Tính được

\(MN = \frac{{BC}}{2} = \frac{{SB\sqrt 2 }}{2}\)

\(AM = \frac{{SB\sqrt 5 }}{2}\)

Tam giác \(AMN\) cân nên \(AM = AN\)

Do đó \(\cos \widehat {AMN} = \frac{{A{M^2} + M{N^2} - A{N^2}}}{{2{\rm{AM}}{\rm{.MN}}}} = \frac{{MN}}{{2{\rm{A}}M}} = \frac{{\frac{{SB\sqrt 2 }}{2}}}{{{\rm{S}}B\sqrt 5 }} = \frac{{\sqrt {10} }}{{10}}\). 

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Bình Phú

Số câu hỏi: 50

Copyright © 2021 HOCTAP247