Trong không gian với hệ tọa độ \(Oxyz,\) cho hai vectơ \(\vec{u},\,\,\vec{v}\) tạo với nhau một góc \({{120}^{0}}\) và \(\left| {\vec{u}} \right|=2;\)\(\left| {\vec{v}} \right|=5.\...

Câu hỏi :

Trong không gian với hệ tọa độ \(Oxyz,\) cho hai vectơ \(\vec{u},\,\,\vec{v}\) tạo với nhau một góc \({{120}^{0}}\) và \(\left| {\vec{u}} \right|=2;\)\(\left| {\vec{v}} \right|=5.\) Tính giá trị biểu thức \(\left| \vec{u}+\vec{v} \right|.\)  

A. \(\sqrt{19}.\)    

B. \(\sqrt{39}.\)    

C. \(7.\)     

D. \(-\,5.\) 

* Đáp án

A

* Hướng dẫn giải

Ta có \({{\left| \vec{u}+\vec{v} \right|}^{2}}={{\left( \vec{u}+\vec{v} \right)}^{2}}={{\left| {\vec{u}} \right|}^{2}}+2\vec{u}.\vec{v}+{{\left| {\vec{v}} \right|}^{2}}\) mà \(\vec{u}.\vec{v}=\left| {\vec{u}} \right|.\left| {\vec{u}} \right|.\cos \left( \vec{u};\vec{v} \right)=2.5.\cos {{120}^{0}}=-\,5.\)

Vậy \({{\left| \vec{u}+\vec{v} \right|}^{2}}={{2}^{2}}+2.\left( -\,5 \right)+{{5}^{2}}=19\,\,\xrightarrow{{}}\,\,\left| \vec{u}+\vec{v} \right|=\sqrt{19}.\)

Chọn A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Ngô Quyền

Số câu hỏi: 50

Copyright © 2021 HOCTAP247