Cho phương trình lượng giác \(2m\sin x\cos x+4{{\cos }^{2}}x=m+5,\) với \(m\) là một phần tử của tập hợp \(E=\left\{ -\,3;-\,2;-\,1;0;1;2 \right\}.\) Có bao nhiêu giá trị của \(m\)...

Câu hỏi :

Cho phương trình lượng giác \(2m\sin x\cos x+4{{\cos }^{2}}x=m+5,\) với \(m\) là một phần tử của tập hợp \(E=\left\{ -\,3;-\,2;-\,1;0;1;2 \right\}.\) Có bao nhiêu giá trị của \(m\) để phương trình đã cho có nghiệm ? 

A. 3

B. 4

C. 6

D. 2

* Đáp án

A

* Hướng dẫn giải

Ta có \(2m\sin x\cos x+4{{\cos }^{2}}x=m+5\Leftrightarrow m.\sin 2x+2\left( 1+\cos 2x \right)=m+5\)

\(\Leftrightarrow m.\sin 2x+2\cos 2x=m+3\) có nghiệm \(\Leftrightarrow \)\({{m}^{2}}+{{2}^{2}}\ge {{\left( m+3 \right)}^{2}}\Leftrightarrow m\le -\,\frac{5}{6}.\)

Kết hợp với \(m\in E=\left\{ -\,3;-\,2;-\,1;0;1;2 \right\}\) suy ra \(m=\left\{ -\,3;-\,2;-\,1 \right\}.\)

Chọn A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Ngô Quyền

Số câu hỏi: 50

Copyright © 2021 HOCTAP247