Cho hình chóp \(S.ABC\) có các cạnh bên \(SA,\,\,SB,\,\,SC\) tạo với đáy các góc bằng nhau và đều bằng \({{30}^{0}}.\) Biết \(AB=5,\,\,AC=7,\,\,BC=8.\) Tính khoảng cách \(d\) từ \(...

Câu hỏi :

Cho hình chóp \(S.ABC\) có các cạnh bên \(SA,\,\,SB,\,\,SC\) tạo với đáy các góc bằng nhau và đều bằng \({{30}^{0}}.\) Biết \(AB=5,\,\,AC=7,\,\,BC=8.\) Tính khoảng cách \(d\) từ \(A\) đến mặt phẳng \(\left( SBC \right).\)  

A. \(d=\frac{35\sqrt{13}}{52}.\)   

B. \(d=\frac{35\sqrt{13}}{26}.\)   

C. \(d=\frac{35\sqrt{39}}{52}.\)  

D. \(d=\frac{35\sqrt{13}}{13}.\) 

* Đáp án

C

* Hướng dẫn giải

Gọi \(H\) là hình chiếu của \(S\) trên mặt phẳng \(\left( ABC \right)\)

Suy ra \(\widehat{\left( SA;\left( ABC \right) \right)}=\widehat{\left( SA;AH \right)}=\widehat{SAH}\Rightarrow \widehat{SAH}=\widehat{SBH}=\widehat{SCH}.\)

\(\Rightarrow \)\(SA=SB=SC\)\(\Rightarrow \,\,H\) là tâm đường tròn ngoại tiếp \(\Delta \,ABC.\)

\(\begin{align}  & {{S}_{\Delta ABC}}=\sqrt{p\left( p-a \right)\left( p-b \right)\left( p-c \right)}=\sqrt{10.5.3.2}=10\sqrt{3} \\  & \Rightarrow R=\frac{abc}{4S}=\frac{5.7.8}{40\sqrt{3}}=\frac{7\sqrt{3}}{3} \\ \end{align}\)

Bán kính đường tròn ngoại tiếp \(\Delta \,ABC\) là \({{R}_{\Delta \,ABC}}=\frac{7\sqrt{3}}{3}.\)

Tam giác \(SAH\) vuông tại \(H,\) có

\(SH=AH.\tan {{30}^{0}}=\frac{7}{3}\Rightarrow SA=\sqrt{S{{H}^{2}}+A{{H}^{2}}}=\frac{14}{3}=SB=SC\)

Diện tích tam giác \(SBC\) là

\(\begin{align}  & {{S}_{\Delta \,SBC}}=\frac{1}{2}\sqrt{S{{B}^{2}}-{{\left( \frac{BC}{2} \right)}^{2}}}.BC=\frac{1}{2}.\sqrt{{{\left( \frac{14}{3} \right)}^{2}}-{{4}^{2}}}.8=\frac{8\sqrt{13}}{3}; \\  & {{V}_{S.ABC}}=\frac{1}{3}.SH.{{S}_{\Delta \,ABC}}=\frac{1}{3}.d\left( A;\left( SBC \right) \right).{{S}_{\Delta \,SBC}}\Rightarrow d\left( A;\left( SBC \right) \right)=\frac{35\sqrt{39}}{52}. \\ \end{align}\)

Chọn C.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Ngô Quyền

Số câu hỏi: 50

Copyright © 2021 HOCTAP247