Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB=a\sqrt{3},\,\,AD=a.\) Tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy. Tính theo \(a\) diện tích \(S\)...

Câu hỏi :

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB=a\sqrt{3},\,\,AD=a.\) Tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy. Tính theo \(a\) diện tích \(S\) của mặt cầu ngoại tiếp hình chóp \(S.ABCD.\) 

A. \(S=5\pi {{a}^{2}}.\) 

B. \(S=2\pi {{a}^{2}}.\)    

C. \(S=10\pi {{a}^{2}}.\)    

D. \(S=4\pi {{a}^{2}}.\) 

* Đáp án

A

* Hướng dẫn giải

Cách 1:

Bán kính đường tròn ngoại tiếp hình chữ nhật \(ABCD\) là \({{R}_{ABCD}}=a.\)

Bán kính đường tròn ngoại tiếp tam giác \(ABC\) là \({{R}_{\Delta \,ABC}}=a\sqrt{3}.\frac{\sqrt{3}}{3}=a.\)

Áp dụng công thức tính nhanh, bán kính mặt cầu ngoại tiếp hình chóp \(S.ABCD\) là

\(R=\sqrt{R_{ABCD}^{2}+R_{\Delta \,ABC}^{2}-\frac{A{{B}^{2}}}{4}}=\sqrt{{{a}^{2}}+{{a}^{2}}-\frac{{{\left( a\sqrt{3} \right)}^{2}}}{4}}=\frac{a\sqrt{5}}{2}.\)

Vậy diện tích mặt cầu cần tính là \(S=4\pi {{R}^{2}}=4\pi .{{\left( \frac{a\sqrt{5}}{2} \right)}^{2}}=5\pi {{a}^{2}}.\)

Cách 2 :

Gọi H là trung điểm của \(AB\Rightarrow SH\bot \left( ABCD \right)\)

Gọi O là tâm hình chữ nhật ABCD \(\Rightarrow \) O là tâm đường tròn ngoại tiếp \(ABCD\).

Qua O kẻ đường thẳng \({{d}_{1}}//SH\Rightarrow {{d}_{1}}\bot \left( ABCD \right)\) tại O.

Gọi \(G\) là tâm tam giác đều \(ABC,\) qua G kẻ \({{d}_{2}}//HI\Rightarrow {{d}_{2}}\bot \left( ABC \right)\) tại G.

Gọi \(I={{d}_{1}}\cap {{d}_{2}}\Rightarrow I\) là tâm đường tròn ngoại tiếp chóp \(S.ABCD\).

Ta có : \(IO=GH=\frac{1}{3}SH=\frac{1}{3}.\frac{a\sqrt{3}.\sqrt{3}}{2}=\frac{a}{2};AC=\sqrt{A{{B}^{2}}+A{{D}^{2}}}=2a\Rightarrow AO=\frac{1}{2}AC=a\).

Xét tam giác vuông  AIO có \(IA=\sqrt{I{{O}^{2}}+O{{A}^{2}}}=\sqrt{{{\left( \frac{a}{2} \right)}^{2}}+{{a}^{2}}}=\frac{a\sqrt{5}}{2}\)

Vậy diện tích mặt cầu cần tính là \(S=4\pi {{R}^{2}}=4\pi .{{\left( \frac{a\sqrt{5}}{2} \right)}^{2}}=5\pi {{a}^{2}}.\)

Chọn A.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Ngô Quyền

Số câu hỏi: 50

Copyright © 2021 HOCTAP247