Cho hàm số \(y = f(x)\) có đạo hàm \(f'(x) = x{(x + 1)^2}{(x - 3)^3},\forall x \in \mathbb{R}\). Số điểm cực trị của hàm số là

Câu hỏi :

Cho hàm số \(y = f(x)\) có đạo hàm \(f'(x) = x{(x + 1)^2}{(x - 3)^3},\forall x \in \mathbb{R}\). Số điểm cực trị của hàm số là  

A. \(5\)    

B. \(3\)    

C. \(2\)    

D. \(1\)    

* Đáp án

C

* Hướng dẫn giải

Dễ thấy phương trình \(f'\left( x \right) = 0\) có hai nghiệm bội lẻ là \(x = 0\) (nghiệm đơn) và \(x = 3\) (bội ba) nên \(f'\left( x \right)\) đổi dấu qua từng nghiệm này.

Vậy hàm số có hai điểm cực trị.

Chọn C.

Copyright © 2021 HOCTAP247