A. \({2019^{1009}}.\)
B. \({2019^{2010}}.\)
C. \({2019^{2019}}.\)
D. \({2.2019^{1009}}.\)
D
Ta có \({{\rm{z}}^2} + z + {2019^{2018}} = 0 \Leftrightarrow {\left( {z + \dfrac{1}{2}} \right)^2} - \dfrac{1}{4} + {2019^{2018}} = 0 \Leftrightarrow {\left( {z + \dfrac{1}{2}} \right)^2} = \dfrac{1}{4} - {2019^{2018}}\)
\( \Leftrightarrow {\left( {z + \dfrac{1}{2}} \right)^2} = \left( {{{2019}^{2018}} - \dfrac{1}{4}} \right).{i^2} \Leftrightarrow \left[ \begin{array}{l}z = - \dfrac{1}{4} - \sqrt {{{2019}^{2018}} - \dfrac{1}{4}} .i\\z = - \dfrac{1}{4} + \sqrt {{{2019}^{2018}} - \dfrac{1}{4}} .i\end{array} \right.\)
Suy ra \({z_1} = - \dfrac{1}{2} - \sqrt {{{2019}^{2018}} - \dfrac{1}{4}} .i \Rightarrow \left| {{z_1}} \right| = \sqrt {{{\left( { - \dfrac{1}{2}} \right)}^2} + {{2019}^{2018}} - \dfrac{1}{4}} = \sqrt {{{2019}^{2018}}} = {2019^{1009}}\)
\({z_2} = - \dfrac{1}{2} + \sqrt {{{2019}^{2018}} - \dfrac{1}{4}} .i \Rightarrow \left| {{z_2}} \right| = \sqrt {{{\left( { - \dfrac{1}{2}} \right)}^2} + {{2019}^{2018}} - \dfrac{1}{4}} = \sqrt {{{2019}^{2018}}} = {2019^{1009}}\)
Do đó \(\left| {{z_1}} \right| + \left| {{z_2}} \right| = {2019^{1009}} + {2019^{1009}} = {2.2019^{1009}}\)
Chọn D.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247