A. \(2{a^3}.\)
B. \(2{a^3}\sqrt 3 .\)
C. \(\dfrac{{4{a^3}}}{3}.\)
D. \(\dfrac{{2{a^3}}}{3}.\)
A
Gọi \(E\) là trung điểm của \(BC.\)
Vì \(ABC\) là tam giác đều cạnh \(2a\) nên \(AE = \dfrac{{2a\sqrt 3 }}{2} = a\sqrt 3 \)
Vì \(O\) là trọng tâm tam giác \(ABC\) nên \(AO = \dfrac{2}{3}.AE = \dfrac{2}{3}.a\sqrt 3 = \dfrac{{2a\sqrt 3 }}{3}\)
Xét tam giác \(AOA'\) vuông tại \(A\) nên \(AA' = \sqrt {A'{O^2} - A{O^2}} = \sqrt {{{\left( {\dfrac{{2a\sqrt 6 }}{3}} \right)}^2} - {{\left( {\dfrac{{2a\sqrt 3 }}{3}} \right)}^2}} = \dfrac{{2a\sqrt 3 }}{3}\)
Diện tích đáy \({S_{ABC}} = \dfrac{{{{\left( {2a} \right)}^2}\sqrt 3 }}{4} = {a^2}\sqrt 3 \)
Thể tích lăng trụ \({V_{ABC.A'B'C'}} = AA'.{S_{ABC}} = \dfrac{{2a\sqrt 3 }}{3}.{a^2}\sqrt 3 = 2{a^3}.\)
Chọn A.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247