A. \(\dfrac{x}{2} = \dfrac{{y + 1}}{{ - 1}} = \dfrac{{z - 1}}{2}.\)
B. \(\dfrac{x}{2} = \dfrac{{y + 1}}{1} = \dfrac{{z - 1}}{{ - 2}}.\)
C. \(\dfrac{x}{2} = \dfrac{{y + 1}}{1} = \dfrac{{z + 1}}{{ - 2}}.\)
D. \(\dfrac{x}{2} = \dfrac{{y + 1}}{{ - 1}} = \dfrac{{z + 1}}{2}.\)
C
Gọi \(C\left( {1 + t;1 + 2t;1 + 2t} \right)\) là giao điểm của \(\Delta \) và \(d\). Khi đó \(\overrightarrow {AC} = \left( {t - 1;2t + 1;2t + 4} \right)\).
\(\overrightarrow {BA} = \left( {0;3; - 4} \right),\overrightarrow {AC} = \left( {t - 1;2t + 1;2t + 4} \right) \Rightarrow \left[ {\overrightarrow {BA} ,\overrightarrow {AC} } \right] = \left( {14t + 16; - 4t + 4; - 3t + 3} \right)\)
\(d\left( {B,\Delta } \right) = \dfrac{{\left| {\left[ {\overrightarrow {BA} ,\overrightarrow {AC} } \right]} \right|}}{{\left| {\overrightarrow {AC} } \right|}} = \dfrac{{\sqrt {{{\left( {14t + 16} \right)}^2} + {{\left( { - 4t + 4} \right)}^2} + {{\left( { - 3t + 3} \right)}^2}} }}{{\sqrt {{{\left( {t - 1} \right)}^2} + {{\left( {2t + 1} \right)}^2} + {{\left( {2t + 4} \right)}^2}} }}\)
Dùng MTCT (chức năng TABLE) nhập hàm \(f\left( x \right) = \dfrac{{{{\left( {14x + 16} \right)}^2} + {{\left( { - 4x + 4} \right)}^2} + {{\left( { - 3x + 3} \right)}^2}}}{{{{\left( {x - 1} \right)}^2} + {{\left( {2x + 1} \right)}^2} + {{\left( {2x + 4} \right)}^2}}}\)
Bước START nhập \( - 5\), bước END nhập \(5\) và bước STEP nhập \(1\).
Ta được kết quả \(f\left( x \right)\) min tại \(x = - 1\) hay \(d\left( {B,\Delta } \right)\) min khi \(t = - 1\).
Từ đó \(C\left( {0; - 1; - 1} \right)\) và \(\overrightarrow {CA} = \left( {2;1; - 2} \right)\) nên \(AC\) có phương trình \(\dfrac{x}{2} = \dfrac{{y + 1}}{1} = \dfrac{{z + 1}}{{ - 2}}.\)
Chọn C.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247